63 research outputs found

    Current Status of Forecasting Toxic Harmful Algae for the North-East Atlantic Shellfish Aquaculture Industry

    Get PDF
    Across the European Atlantic Arc (Scotland, Ireland, England, France, Spain, and Portugal) the shellfish aquaculture industry is dominated by the production of mussels, followed by oysters and clams. A range of spatially and temporally variable harmful algal bloom species (HABs) impact the industry through their production of biotoxins that accumulate and concentrate in shellfish flesh, which negatively impact the health of consumers through consumption. Regulatory monitoring of harmful cells in the water column and toxin concentrations within shellfish flesh are currently the main means of warning of elevated toxin events in bivalves, with harvesting being suspended when toxicity is elevated above EU regulatory limits. However, while such an approach is generally successful in safeguarding human health, it does not provide the early warning that is needed to support business planning and harvesting by the aquaculture industry. To address this issue, a proliferation of web portals have been developed to make monitoring data widely accessible. These systems are now transitioning from “nowcasts” to operational Early Warning Systems (EWS) to better mitigate against HAB-generated harmful effects. To achieve this, EWS are incorporating a range of environmental data parameters and developing varied forecasting approaches. For example, EWS are increasingly utilizing satellite data and the results of oceanographic modeling to identify and predict the behavior of HABs. Modeling demonstrates that some HABs can be advected significant distances before impacting aquaculture sites. Traffic light indices are being developed to provide users with an easily interpreted assessment of HAB and biotoxin risk, and expert interpretation of these multiple data streams is being used to assess risk into the future. Proof-of-concept EWS are being developed to combine model information with in situ data, in some cases using machine learning-based approaches. This article: (1) reviews HAB and biotoxin issues relevant to shellfish aquaculture in the European Atlantic Arc (Scotland, Ireland, England, France, Spain, and Portugal; (2) evaluates the current status of HAB events and EWS in the region; and (3) evaluates the potential of further improving these EWS though multi-disciplinary approaches combining heterogeneous sources of information.Versión del edito

    Analyse et modĂ©lisation des Ă©volutions Ă  long terme de la biodiversitĂ© phytoplanctonique dans les zones cĂŽtiĂšres sous l’effet des pressions environnementales et anthropiques

    No full text
    Coastal areas are highly-dynamic systems exposed to the effect of climate variations and human impacts, influencing the community diversity. In these ecosystems, the phytoplankton constitutes the base of food webs and integrates the effects of global changes and quality variations of coastal waters. In this context, the general objective of this study was to assess the long-term changes in the diversity of phytoplankton communities in coastal waters at different dcales and levels of organisation. Firstly, the data collected by the Phytoplankton and Phycotoxin Monitoring Network from the IFREMER was examined to study the temporal variations of the assemblages within the last two decades along the French coast and to assess the relationship with the modifications in their environment. Generally, long-term trends are not identical across the different coastal zones, noting that these changes may have a strong local or regional component which is a characteristic of coastal ecosystems. The second part focuses on the study of environmental conditions favorable to the presence of a number of phytoplankton units. The ecological niche of these units was characterized by their marginality, their tolerance and their degree of overlap, providing information about taxon indicator of specific environmental conditions. Finally, the contribution of benthic taxa to phytoplankton assemblages has been analyzed using their life-forms and the temporal dynamic of their resuspention in the water column.Les zones cĂŽtiĂšres sont des systĂšmes dynamiques exposĂ©s Ă  l’effet des variations climatiques et des impacts anthropiques influençant la diversitĂ© des communautĂ©s. Dans ces Ă©cosystĂšmes, le phytoplancton joue un rĂŽle important de par sa place comme producteur primaire et intĂšgre les effets des changements globaux et des variations de la qualitĂ© des eaux cĂŽtiĂšres. L’objectif gĂ©nĂ©ral de ce travail a Ă©tĂ© d’étudier les variations Ă  long-terme de la diversitĂ© des communautĂ©s phytoplanctoniques en eaux cĂŽtiĂšres Ă  diffĂ©rentes Ă©chelles et niveaux d’organisation. Les donnĂ©es recueillies par le RĂ©seau d’Observation et de la Surveillance du Phytoplancton et des Phycotoxines de l’IFREMER ont permis d’examiner, dans un premiĂšre partie, les variations temporelles des assemblages sur deux dĂ©cennies Ă  l’échelle du littoral français et la relation avec les variations de l’environnement. Les tendances observĂ©es ne sont en gĂ©nĂ©ral pas identiques dans les diffĂ©rentes zones du littoral, soulignant une forte composante locale ou rĂ©gionale, caractĂ©ristique des Ă©cosystĂšmes cĂŽtiers. La seconde partie porte sur les conditions favorables Ă  la prĂ©sence de certaines unitĂ©s du phytoplancton. La niche Ă©cologique des unitĂ©s a Ă©tĂ© caractĂ©risĂ©e par leur marginalitĂ©, leur tolĂ©rance et leur degrĂ© de chevauchement, apportant des informations sur des unitĂ©s indicatrices des conditions environnementales spĂ©cifiques. Enfin, la contribution des taxons benthiques aux assemblages phytoplanctoniques a Ă©tĂ© analysĂ©e Ă  partir de leur forme de vie et de la dynamique temporelle de leur remise en suspension

    Dynamic Linear Models for analysing time series data in coastal environmental monitoring

    No full text
    Global changes have led to a renewed interest in time series of environmental monitoring. In France, for example, the French Research Institute for the Exploitation of the Sea (Ifremer) has been managing for 40 years several networks with hundreds of active sites, with annual to fortnightly sampling frequencies, measuring dozens of variables. These long-term datasets are difficult to analyse due to their characteristics (e.g. missing data, outliers, changes in sampling frequency, shifts).For this large number of time series, this paper proposes a semi-automatic procedure based on Dynamic Linear Models, detailed from data pre-processing (e.g. time unit definition, aggregations, transformations), through model specification, automatic and manual intervention, outlier and shift handling, to model hypothesis testing.When applied to three time series combining the above features, the results showed that missing data and changes in sampling frequency were adequately handled. Outliers and structural breaks were identified automatically, but also added manually. Highlighted shifts were identified as artefactual (e.g. probe drift), anthropogenic (e.g. ministerial decree) and ecological changes (e.g. storm impact).Finally, the presented treatment has been successfully applied routinely to more than 19,000 time series with a common and simple model structure. The broad theoretical framework offered by dynamic linear models opens up fruitful perspectives for improving and extending the results presented here, in particular for dealing with measurement quantification limits and time-varying observation variances

    Application de l’indice de composition pigmentaire ICBC pour Manche-Atlantique aux masses d’eau mĂ©diterranĂ©ennes

    No full text
    Suite aux  Ă©tudes concernant la mise en place d’un indice de composition pigmentaire dans les eaux de Manche-Atlantique (Lampert, 2018) et en MĂ©diterranĂ©e (Goffart, 2018), il a Ă©tĂ© convenu de procĂ©der Ă  un Ă©change de donnĂ©es pour ces deux façades afin d’évaluer le potentiel de ces deux indicateurs sur les façades pour lesquelles ils n’ont pas Ă©tĂ© conçus. Nous avons donc, appliquĂ© l’indice de composition ICBC aux donnĂ©es obtenues entre 2009 et 2017 en MĂ©diterranĂ©e (ICBCmed), dĂ©fini une grille de classement pour l’EQR IC et finalement classĂ© les masses d’eau afin d’inclure l’indice de composition dans l’indicateur phytoplancton de MĂ©diterranĂ©e. Cet ICBCmed a Ă©tĂ© calculĂ© pour les 15 points Ă©chantillonnĂ©s. Le rĂ©sultat du classement est cohĂ©rent avec les rĂ©sultats obtenus avec les 9 points DCE oĂč les indices d’abondance et de composition Ă©taient dĂ©jĂ  mis en place. La comparaison du classement des 15 points par l’ICBCmed et l’indice ICMEDIT (dĂ©veloppĂ© pour les eaux mĂ©diterranĂ©ennes par Goffart, 2018), est Ă©galement trĂšs similaire, Ă  l’exception du point TAMARONE. L’hĂ©tĂ©rogĂ©nĂ©itĂ© de l’échantillonnage pourrait ĂȘtre la cause de cette diffĂ©rence. L’ICBCmed rĂ©pond positivement aux besoins d’un indice de composition pigmentaire pour les eaux mĂ©diterranĂ©ennes. Il complĂšte les informations dĂ©jĂ  acquises par les indices de biomasse et d’abondance, et procure une vision des changements de l’ensemble des classes algales par rapport Ă  la rĂ©fĂ©rence. Toutes les classes phytoplanctoniques sont incluses, pour peu que leurs pigments biomarqueurs y soient dans l’échantillon analysĂ©. Leur mise en application dans le cadre de la DCE reste simple et nul besoin de faire appel Ă  des spĂ©cialistes. Le calcul des incertitudes est aisĂ©ment calculable selon les prescriptions des documents officiels DCE et dĂ©jĂ  mis en application par l’Ifremer

    DĂ©termination d’un indice de composition phytoplanctonique pigmentaire pour les eaux de la Manche et de l’Atlantique (DCE)

    No full text
    La demande de la part de la Commission EuropĂ©enne, pour inclure un Indice de Compositions (IC) dans l’indicateur « phytoplancton » de la Directive Cadre de l’Eau, a Ă©tĂ© prise en compte et un test en conditions rĂ©elle a Ă©tĂ© menĂ© sur les donnĂ©es pigmentaires acquises entre 2016 et 2017. Deux Ă©chantillons par mois ont Ă©tĂ© analysĂ©s par chromatographie liquide (HPLC) sur 16 points, situĂ©s de la frontiĂšre belge et jusqu’au nord de la Loire. Cet indice (ICBC) a Ă©tĂ© bĂąti par la comparaison des moyennes pigmentaires de chaque point Ă  une rĂ©fĂ©rence, via l’indice de similaritĂ© de Bray-Curtis. Cette rĂ©fĂ©rence (REF-Atl) a Ă©tĂ© dĂ©finie comme la moyenne des deux points les moins impactĂ©es (Querqueville et Les HĂ©bihens). La frĂ©quence d’échantillonnage retenue est celle de la pĂ©riode productive dans ces eaux : de mars Ă  octobre. Une corrĂ©lation supĂ©rieure Ă  0.95 est obtenue entre l’indice ICBC et les pressions (nitrate plus nitrite, ammonium, phosphate, turbiditĂ©). Les mĂȘmes valeurs de corrĂ©lation sont obtenues entre la chlorophylle totale et la somme des pigments biomarqueurs, ce qi permet de valider le modĂšle pigmentaire. Une grille de classement est proposĂ©e sur la base des rĂ©sultats obtenus.  A partir de l’ICBC calculĂ©, est obtenu l’EQR IC qui doit ĂȘtre bornĂ© entre 0 et 1, comme c’est le cas pour tous les indices DCE. Nos rĂ©sultats classent les masses d’eau Ă©chantillonnĂ©es dans un gradient trĂšs proche de celui obtenu avec les indices de biomasse et d’abondance. A cet EQR IC est associĂ© un intervalle de confiance, et au classement des masses d’eau, un niveau de confiance (%). Ces incertitudes sont calculĂ©es par bootstrap sur un rĂ©Ă©chantillonnage de 1000 tirages alĂ©atoires avec remise des valeurs brutes

    Mise à jour des indicateurs de l'Element de qualité Phytoplancton de l'Etat Biologique et de l'Etat Physico-Chimique DCE des masses d'eau littorales du bassin Seine-Normandie

    No full text
    Ce rapport prĂ©sente la mise Ă  jour intermĂ©diaire des indicateurs des Ă©lĂ©ments de qualitĂ© Phytoplancton et de l’Etat Physico-Chimique pour la pĂ©riode 2015-2020, qui ne se substitue pas Ă  l’Etat des Lieux officiel des masses d’eau pour la DCE. Ces Ă©valuations sont comparĂ©es Ă  celles de l’Etat des Lieux 2019 sur la pĂ©riode 2011-2016, et l’évolution temporelle des indices par pĂ©riodes glissantes de 6 annĂ©es depuis le dĂ©but du suivi. Une premiĂšre mise Ă  jour de l’indice Composition de l’indicateur Phytoplancton pour la pĂ©riode 2016-2019 est aussi prĂ©sentĂ©e. Ce rapport intĂšgre en annexe les fiches pour l’indicateur Phytoplancton et ceux de l’Etat Physico-chimique, qui sont tĂ©lĂ©chargeables Ă  partir de l’atlas interactif DCE du bassin Seine-Normandie.

    DĂ©finition d’un indice composition pour le phytoplancton en Manche- Atlantique, Ă  partir des donnĂ©es du micro-phytoplancton du REPHY et des rĂ©seaux rĂ©gionaux, et des mesures complĂ©mentaires de la flore phytoplanctonique acquises avec des techniques novatrices. Action 3 – Livrable 1. Propositions pour un indice de composition du phytoplancton, basĂ© sur les rĂ©sultats des mĂ©thodes microscopie, pigments et diversitĂ© gĂ©nĂ©tique. Rapport final, fĂ©vrier 2016

    No full text
    This deliverable is composed of two reports which propose indice of phytoplankton composition, based respectively on the results of pigment and genetic diversity methods, and the results of microscopy method. Proposals based on the results of pigment and genetic diversity methods. The present work is a continuation of several studies carried out in the past (Siano and Delmas, 2013, 2015) on investigating an indicator of phytoplankton diversity using two methods complementary to optical microscopy: the genetic diversity analyzed with metabarcoding (exhaustive analysis of the diversity and relative abundance of OTUs, i.e. groups of sequences identified by their genetic resemblance) and the pigmentary diversity (analysis of the diversity and abundance of pigments produced by photosynthetic cells). As part of the present study we aim to (i) to deepen our knowledge on the spatio‐temporal structure of phytoplankton assemblages in relation with environmental forcings for three size classes (0.2‐3 ÎŒm, 3‐20ÎŒm, >20ÎŒm, here respectively defined by convention as picophytoplankton, nanophytoplankton and microphytoplankton), and (ii) to verify the hypothesis that certain groups of the phytoplankton could be representative and descriptor of their corresponding size class. This work relies on data collected during four sampling campaigns: three of them at spatial scale (Pelgas 2012, 2013, and Phytec campaigns) and one at temporal scale (Dynapse). During Pelgas 2012 and 2013 campaigns, the sampling was done in the Gironde plume during May, on three coast‐tooffshore transects. The Phytec campaign was carried out in the Iroise sea (Bay of Brest) and the south area of Britain, including the Loire plume, bays of Quiberon, Vilaine, and Concarneau. Finally, the Dynapse campaign was carried out in the bay of Concarneau, between March and July 2012. The statistical analyses performed on metarbarcoding data show a clear separation of the three size classes studied and suggest that picophytoplankton is less variable in the time space than nano‐ and microphytoplankton. This is related to the recurrent presence in this size fraction of some OTUs such as Micromonas sp, Ostreococcus sp and Chrysochromulina rotalis. Within picophytoplankton, we found a good correlation between certain OTUs of the Mamiellophyceae group and chlorophyll b, the pigment characteristic of this class of microalgae. This correspondence confirms the good intercalibration of pigment and genetic diversity data. Chlorophyll b appeared to be a good descriptor of biomass and variability of picophytoplankton. Indeed, within the picophytoplankton, chlorophyll b is positively correlated to the total chlorophyll a, the latter being an indicator of the total picophytoplankton biomass. The phytoplankton variability, studied through the genetic and pigmentary analysis, is not explained by measured environmental parameters, certainly because of insufficiently pronounced environmental gradients during the sampling campaigns. Given the results obtained, we recommend testing the relevance of OTUs (especially those identified within picophytoplankton) and chlorophyll b as descriptors of the state of water masses on a more contrasted gradient of pressures. A sampling should be carried out on a well‐established environmental gradient beforehand in order to test the hypothesis that chlorophyll b and relative abundances of OTUs Micromonas and Bathycoccus prasinos could be used for the detecting and quantifying environmental conditions that fall anthropogenic influences. Proposals based on the results of microscopy method. As part of the implementation of the Water Framework Directive (WFD), the evaluation of the ecological status of coastal waters is based in particular on the monitoring of phytoplankton composition, indice not defined to date in France. As part of the observation and surveillance network for phytoplankton and hydrology (REPHY), established in 1984, counts of all phytoplankton species sampled in water are made by optical microscopy. This study aims to propose one or more indices of phytoplankton composition, based on counts made in microscope, to evaluate the quality of coastal waters of the Channel‐Atlantic coast, as part of the WFD. In their article, Spatharis and Tsirtsis (2010) propose a method for the selection of composition indices, based on the study of the monotonicity and linearity behavior of the relationship between the indice and the logarithm of the total abundance. In this study, the list of indices and the selection method proposed by Spatharis and Tsirtsis (2010) are taken and applied to the data from 16 monitoring locations spread across the Channel‐Atlantic coast. This study selected six indices: the indices "Odum", "Menhinick", "Camargo", "Sheldon," "E3" and "Simpson E." Further study of the relationship indice vs pressures, other than total abundance, using other statistical tools would be needed to confirm the relevance of these indices. In addition, for the indice to be operational within the WFD framework, additional work on temporal aggregation of measurements, on the definition of reference values and therefore on the calculation of EQR, are still required in connection with thematic experts.Ce livrable est composĂ© de deux rapports faisant des propositions pour un indice de composition du phytoplancton, basĂ©s respectivement sur les rĂ©sultats des mĂ©thodes de diversitĂ© pigmentaire et gĂ©nĂ©tique, et sur les rĂ©sultats de la mĂ©thode microscopie. Propositions basĂ©es sur les rĂ©sultats des mĂ©thodes de diversitĂ© pigmentaire et gĂ©nĂ©tique (19 pages, pages 13 Ă  31 du document pdf). Ce travail s’inscrit dans la continuitĂ© des Ă©tudes effectuĂ©es prĂ©cĂ©demment (Siano et Delmas, 2013, 2015) sur la recherche d’un indicateur de diversitĂ© du phytoplancton en utilisant deux mĂ©thodes complĂ©mentaires Ă  la microscopie optique : la diversitĂ© gĂ©nĂ©tique analysĂ©e par approche de metabarcoding (analyse exhaustive de la diversitĂ© et abondance relative des OTUs, i.e. groupes des sĂ©quences identifiĂ©s pour leur ressemblance gĂ©nĂ©tique) et la diversitĂ© pigmentaire (analyse de la diversitĂ© et de l’abondance des pigments produits par les cellules photosynthĂ©tiques). Dans le cadre de cette Ă©tude nous avons cherchĂ© Ă  : (i) approfondir nos connaissances sur la structure spatiotemporelle des assemblages phytoplanctoniques en rapport aux forçages environnementaux pour trois classes de taille (0,2‐3 ÎŒm, 3‐20ÎŒm, >20ÎŒm, ici dĂ©finies par convention respectivement picophytoplancton, nanophytoplancton et microphytoplancton) et (ii) vĂ©rifier l’hypothĂšse que certains groupes du phytoplancton pourraient ĂȘtre reprĂ©sentatifs et descripteurs de leur classe de taille correspondante. Cette Ă©tude s’est basĂ©e sur les donnĂ©es recueillies lors de quatre campagnes d’échantillonnage : trois d’entre elles Ă  l’échelle spatiale (campagnes Pelgas 2012, 2013 et campagne Phytec) et une Ă  l’échelle temporelle (Dynapse). Lors des campagnes Pelgas 2012 et 2013, l’échantillonnage a Ă©tĂ© rĂ©alisĂ© dans le panache de la Gironde au mois de mai, sur trois radiales cĂŽte‐large. La campagne Phytec a Ă©tĂ© effectuĂ©e en juin dans la mer d’Iroise (rade de Brest) et la zone Bretagne sud, incluant le panache de la Loire, les Baies de Quiberon et de la Vilaine et la Baie de Concarneau. Enfin, la campagne Dynapse a Ă©tĂ© rĂ©alisĂ©e dans la Baie de Concarneau, entre mars et juillet 2012. Les analyses statistiques effectuĂ©es sur les donnĂ©es de metabarcoding montrent une nette sĂ©paration des trois classes de taille Ă©tudiĂ©es et suggĂšrent que le picophytoplancton est moins variable dans l’espace‐temps que le nano‐ et le microphytoplancton. Ceci est liĂ© Ă  la prĂ©sence rĂ©currente et proportionnellement plus abondante dans cette fraction de taille de certains OTUs tels que Micromonas, Ostreococcus (Mamiellophyceae) et Chrysochromulina rotalis (Haptophyceae). Au sein du picophytoplancton nous avons retrouvĂ© une bonne correspondance entre certains OTUs du groupe des Mamiellophyceae et la chlorophylle b, le pigment caractĂ©ristique de cette classe de microalgues. Cette correspondance conforte la bonne inter‐calibration des donnĂ©es de diversitĂ© pigmentaire et gĂ©nĂ©tique. La chlorophylle b s’est avĂ©rĂ© ĂȘtre un bon descripteur de la biomasse et de la variabilitĂ© du picophytoplancton. En effet, au sein du picophytoplancton, la chlorophylle b est positivement corrĂ©lĂ©e Ă  la chlorophylle a totale, cette derniĂšre Ă©tant elle‐mĂȘme indicatrice de la biomasse picophytoplanctonique totale. La variabilitĂ© du phytoplancton, Ă©tudiĂ©e par l’analyse gĂ©nĂ©tique et des pigments, n’est pas expliquĂ©e par les paramĂštres environnementaux mesurĂ©s, certainement Ă  cause de gradients environnementaux insuffisamment prononcĂ©s retrouvĂ©s au moment de l’échantillonnage des campagnes. Au vue des rĂ©sultats obtenus, nous recommandons de tester la pertinence des OTUs (notamment ceux identifiĂ©s au sein du picophytoplancton) et de la chlorophylle b en tant que descripteurs de l’état des masses d’eau sur un gradient plus contrastĂ© en termes de pressions. Il faudrait donc rĂ©aliser un Ă©chantillonnage sur un gradient environnemental bien Ă©tabli au prĂ©alable afin de tester l’hypothĂšse selon laquelle la chlorophylle b et les abondances relatives des OTUs Micromonas et Bathycoccus prasinos peuvent ĂȘtre utilisĂ©es pour la dĂ©tection et la quantification des conditions environnementales qui relĂšvent des influences anthropiques. Propositions basĂ©es sur les rĂ©sultats de la mĂ©thode microscopie (37 pages, pages 32 Ă  68 du document pdf). Dans le cadre de la mise en oeuvre de la Directive Cadre sur l'Eau (DCE), l'Ă©valuation de l'Ă©tat Ă©cologique des eaux littorales repose notamment sur le suivi de la composition du phytoplancton, indice non dĂ©fini Ă  ce jour en France. Dans le cadre du rĂ©seau d'observation et de surveillance du phytoplancton et de l’hydrologie (REPHY), mis en place en 1984, des dĂ©nombrements de l'ensemble des espĂšces phytoplanctoniques Ă©chantillonnĂ©es dans l'eau sont rĂ©alisĂ©s par microscopie optique. La prĂ©sente Ă©tude a pour objectif de proposer un ou plusieurs indice(s) de composition phytoplanctonique, basĂ©(s) sur les dĂ©nombrements rĂ©alisĂ©s au microscope, pour Ă©valuer la qualitĂ© des eaux littorales de la façade Manche‐Atlantique, dans le cadre de la DCE. Dans leur article, Spatharis et Tsirtsis (2010) proposent une mĂ©thode pour la sĂ©lection d'indices de composition, basĂ©e sur l'Ă©tude de la monotonicitĂ© et de la linĂ©aritĂ© de la relation entre l'indice et le logarithme de l'abondance totale. Dans la prĂ©sente Ă©tude, la liste d'indices et la mĂ©thode de sĂ©lection proposĂ©es par Spatharis et Tsirtsis (2010) sont reprises et appliquĂ©es aux donnĂ©es issues de 16 lieux de surveillance, rĂ©partis sur l'ensemble de la façade Manche‐Atlantique. Cette Ă©tude a permis de sĂ©lectionner six indices : les indices « Odum », « Menhinick », « Camargo », « Sheldon », « E3 » et « Simpson E ». Une Ă©tude plus approfondie de la relation indice vs pressions, autre que l'abondance totale, au moyen d'autres outils statistiques serait nĂ©cessaire pour confirmer la pertinence de ces indices. De plus, pour que l'indice soit opĂ©rationnel dans le cadre de la DCE, des travaux complĂ©mentaires relatifs Ă  l’agrĂ©gation temporelle des mesures, Ă  la dĂ©finition des valeurs de rĂ©fĂ©rence et par consĂ©quent au calcul des EQR restent Ă  faire, en lien avec les experts thĂ©matiques

    NEONATAL EFFECTS OF MARIJUANA FOLLOWING MATERNAL ILLICIT DRUG USE:A LITERATURE REVIEW

    No full text
    Objective. We sought to compile the most updated information on the use of marijuana during pregnancy and its effects on the neonate as well as the overall development of a child through all stages. Background. Many states have made marijuana either decriminalized or acceptable for medical use, which may potentially lead to increased marijuana use among pregnant women. It is essential to become aware of the effects that marijuana can have on neonates. Methods. Articles were selected from two databases using keywords. Searches were conducted for articles published between January 1, 2010 and October 1, 2015. Keywords used to search for the articles included: Marijuana, cannabis, pregnancy, gestation, neonatal, stillbirth and low birth weight. Results. Six publications were included in this review article. Each of the studies assessed different neonatal outcomes possibly affected by marijuana use during pregnancy including: birth weight \u3c 2500 grams, very low birth weight \u3c 1500 grams, NICU admission, five minute Apgar score, umbilical artery PH, mean gestational age at delivery, and stillbirths, of which all were shown to be statistically insignificant after adjusting for confounding factors. A significant effect was found regarding the possible negative impact on the immune system, and its effects on quality of life. Conclusion. This review offers a compilation of information for healthcare providers to take into account when discussing marijuana use during pregnancy with their patients. Many of the outcomes showed inconclusive results; further studies are critically needed to fully understand the effects of marijuana in neonates. Grants. No grants to disclose

    Assessing phytoplankton realized niches using a French National Phytoplankton Monitoring Network

    No full text
    Relating environmental factors to species occurrence is a fundamental step in a better understanding of the community structure, the spatial and temporal dynamics of populations and how species may respond to environmental changes. In this paper, we used phytoplankton occurrence data, from a French national phytoplankton monitoring network, and environmental variables with the aim of characterizing the realized ecological niches of phytoplankton groups. We selected 35 phytoplankton taxa representing the most important taxa in terms of occurrence frequency and abundance along the French coast of the eastern English Channel, the Southern Bight of the North Sea and the Atlantic Ocean. We show that environmental variables such as nutrient concentration, water temperature, irradiance and turbidity can be considered key factors controlling phytoplankton dynamics and influencing the community structure. By using a statistical framework based on an ordination technique the community structure was analyzed and interpreted in terms of niche overlap, marginality and tolerance. The most marginal taxon was Dactyliosolen and the most tolerant was Skeletonema. Non-marginal taxonomic units could be generalist and specialist, while marginal taxa were rather specialist. Specialist and marginal taxa globally showed lower values of overlap. Keyword

    Realized niche analysis of phytoplankton communities involving HAB: Phaeocystis spp. as a case study

    No full text
    The link between harmful algal blooms, phytoplankton community dynamics and global environmental change is not well understood. To tackle this challenging question, a new method was used to reveal how phytoplankton communities responded to environmental change with the occurrence of an harmful algae, using the coastal waters of the eastern English Channel as a case study. The great interannual variability in the magnitude and intensity of Phaeocystis spp. blooms, along with diatoms, compared to the ongoing gradual decrease in anthropogenic nutrient concentration and rebalancing of nutrient ratios; suggests that other factors, such as competition for resources, may also play an important role. A realized niche approach was used with the Outlying Mean Index analysis and the dynamics of the species’ realized subniches were estimated using the Within Outlying Mean Indexes calculations under low (L) and high (H) contrasting Phaeocystis spp. abundance. The Within Outlying Mean Indexes allows the decomposition of the realized niche into realized subniches, found within the subset of habitat conditions and constrained by a subset of a biotic factor. The two contrasting scenarios were characterized by significantly different subsets of environmental conditions and diatom species (BV-step analysis), and different seasonality in salinity, turbidity, and nutrients. The subset L environmental conditions were potentially favorable for Phaeocystis spp. but it suffered from competitive exclusion by key diatom species such as Skeletonema spp., Thalassiosira gravida, Thalassionema nitzschioides and the Pseudo-nitzchia seriata complex. Accordingly, these diatoms species occupied 81% of Phaeocystis spp.'s existing fundamental subniche. In contrast, the greater number of diatoms, correlated with the community trend, within subset H exerted a weaker biological constraint and favored Phaeocystis spp. realized subniche expansion. In conclusion, the results strongly suggest that both abiotic and biotic interactions should be considered to understand Phaeocystis spp. blooms with greater consideration of the preceeding diatoms. HABs needs must therefore be studied as part of the total phytoplankton community
    • 

    corecore